Search results for "Hot-carrier injection"
showing 4 items of 4 documents
Peculiar aspects of nanocrystal memory cells: Data and extrapolations
2003
Nanocrystal memory cell are a promising candidate for the scaling of nonvolatile memories in which the conventional floating gate is replaced by an array of nanocrystals. The aim of this paper is to present the results of a thorough investigation of the possibilities and the limitations of such new memory cell. In particular, we focus on devices characterized by a very thin tunnel oxide layer and by silicon nanocrystals formed by chemical vapor deposition. The direct tunneling of the electrons through the tunnel oxide, their storage into the silicon nanocrystals, and furthermore, retention, endurance, and drain turn-on effects, well-known issues for nonvolatile memories, are all investigate…
Hot carrier effects in n-MOSFETs with SiO2/HfO2/HfSiO gate stack and TaN metal gate
2009
Charge trapping and trap generation in field-effect transistors with SiO2/HfO2/HfSiO gate stack and TaN metal gate electrode are investigated under uniform and non-uniform charge injection along the channel. Compared to constant voltage stress (CVS), hot carrier stress (HCS) exhibits more severe degradation in transconductance and subthreshold swing. By applying a detrapping bias, it is demonstrated that charge trapping induced degradation is reversible during CVS, while the damage is permanent for hot carrier injection case. © 2008 Elsevier B.V. All rights reserved.
Programming options for nanocrystal MOS memories
2003
Nanocrystal memories represent a promising candidate for the scaling of FLASH memories. In these devices, the charge is not stored in a continuous floating gate but in a discontinuous layer composed by numerous discrete silicon quantum dots well separated one from the other.The nanocrystals of radius of few nanometers are realized by chemical vapor deposition (CVD) of silicon on the tunnel oxide of 2.8 nm of thickness. These islands have been coated with a control oxide of 7 nm formed by CVD and incorporated in Metal-Oxide-Semiconductor structure. The devices are programmed and erased by tunnelling using low voltages and fast times. In addition, the programming can be easily achieved also b…
Coulomb blockade thermometry
1996
One dimensional arrays of normal metal tunnel junctions have been found to exhibit properties which are very suitable for primary and secondary thermometry in a lithographically adjustable temperature range which extends over about two decades. The thermometer is remarkably insensitive to nonuniformities in the actual pattern and to even strong magnetic fields. We also discuss the behaviour of this device at very low temperatures where the hot electron effect due to poor electron phonon coupling ultimately takes over and at very high temperatures where the finite tunnel barrier effects appear. Short arrays, and especially single tunnel junctions show interesting deviations from the universa…